Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process.

نویسندگان

  • Wen-Ying Xu
  • Ting-Yao Gao
چکیده

The electrochemical reduction characteristics of carbon tetrachloride (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mg/L was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with Fe/Cu ratio of 10:1 (w/w) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were different. The degradation rate was not significantly influenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Heavy Metals on Dechlorination of Carbon Tetrachloride by Iron Nanoparticles

Effects of heavy metals on the dechlorination of carbon tetrachloride by iron nanoparticles were investigated in terms of reaction kinetics and product distribution using batch systems. Removal of heavy metals and the interaction between heavy metals and iron nanoparticles at the iron surface were also examined. It was found that Cu(II) enhanced the carbon tetrachloride dechlorination by iron n...

متن کامل

Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride.

Bimetallic iron-aluminum (Fe/Al) particles were synthesized and tested for their reactivity toward carbon tetrachloride using batch reactors and a flow-through column at near neutral pH. Preparation of bimetallic Fe/Al particles was conducted under acidic conditions under which iron was readily deposited onto the aluminum surface. The SEM image showed clusters of iron on the aluminum surface at...

متن کامل

Methanol Steam Reforming Catalyzing over Cu/Zn/Fe Mixed Oxide Catalysts

Methanol steam reforming plays a pivotal role to produce hydrogen for fuel cell systems in a low temperature range. To accomplish higher methanol conversion and lower CO production, the reaction was catalyzed by CuZnFe mixed oxides. Various ratios of Fe and Cu/Zn were coprecipitated in differential method to optimize the CuZnFe structure. The sample containing 45Cu50Zn5Fe (Wt. %) revealed its m...

متن کامل

Trimetallic Pd/Fe/Al particles for catalytic dechlorination of chlorinated organic contaminants.

Zero-valent aluminum based trimetallic particles comprising a combination of catalytically effective amounts (1 wt%) of palladium and zero-valent iron on the aluminum surface were synthesized and tested for the dechlorination of chlorinated methanes in batch reactors. XRD analysis indicated the trimetallic particles present in zero-valent form of all three components. Trimetallic Pd/Fe/Al parti...

متن کامل

Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS.

Reductive dechlorination of carbon tetrachloride (CT) and 1,1,1-trichloroethane (1,1,1-TCA) by FeS with transition metals (Cu(II), Co(II), and Ni(II)) and hydrosulfide was characterized in this study. The batch kinetic experiments were conducted by spiking each stock solution of CT and 1,1,1-TCA into 33 g/L of FeS suspensions with and without transition metals at pH 7.5. No significant enhancem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2007